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We put Mielnik's construction of the convex set of all states of a physical system 
in the general frame of category theory and give topological details lacking in 
previous papers on the subject. 

I N T R O D U C T I O N  

The so-called "convex"  approach  to the foundat ions  o f  quan tum 
mechanics  explores the different structures ( topological ,  geometrical  etc.) 
o f  the convex set o f  all states o f  the physical  system. The set o f  s ta tes- - the  
so-called "statistical figure" (Mielnik, 1974)--is the fundamenta l  object in 
the convex approach.  Mielnik (1974, 1980) gives a general recipe for  the 
construct ion o f  the "statistical figure." Let us recall the main steps o f  his 
construction.  

By X we denote  the topological  manifold  o f  pure states. For  example,  
X may  be the solution mani fo ld  o f  the linear or nonl inear  fundamenta l  
dynamical  (wave) equat ion o f  the theory. 

By F we denote  the class o f  observables which are experimental ly 
defined real cont inuous  functions on X. 

The prescriptions for prepar ing mixed states are represented by the 
probabil i ty measure 7r on Borel subsets o f  X, such that  all the integrals: 

I f ( x )  dTr(x), f c F 
~f 

are convergent.  
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The set II  of  the prescriptions is (up to topological questions) a simplex 
(Haag and Bannier, 1978). 

For any f ~  F we can define an observable jr on mixed states prepared 
according to the prescription zr by the formula 

= f f (x)  drr(x) jr(,,,) 

We "see" the mixed states of  our system by means of the observables f ~ F. 
The limitation in observability introduces an equivalence relation denoted 
by R~ in the set II. Two states r and ~r' are called equivalent iff jr(~-) = jr(or') 
for each f ~ F. 

Now one constructs the figure of states S as the quotient set II/Rp 
(Mielnik, 1974; Haag and Bannier, 1978). For example, when we assume 
that the manifold of  pure states is the unit sphere in a Hilber space and 
observables are all real, continuous quadratic forms on X, then the figure 
of  states S is isomorphic  with the convex set of  density matrices (Mielnik, 
1974). 

In our paper  we put the construction in the general frame of category 
theory and give the topological details lacking in the Mielnik and Haag-  
Bannier papers. For a systematic introduction to category theory we send 
the reader to Semadeni (1971) and Herrlich and Strecker (1973). 

DOCTRINES 

We will use the following doctrines, which are consequences of  the 
Ei lenberg-MacLane program (Semadeni, 1971), in the formulation of  
Goguen (Goguen et al., 1973): 

Doctrine 1. Any species of  mathematical  structure is represented by a 
category, whose objects "are that structure," and whose morphisms "pre-  
serve" it. In our case objects represent the sets of  states of  a physical system 
and morphisms the dynamical transformation. In general the structure of  
the set of  states (object) should depend on possible dynamics (morphisms) 
imposed on the states. Category theory language permits one to retain the 
consistency between structure of  the figure of  states and dynamics. 

Doctrine 2. Any mathematical  scheme for constructing objects of  one 
type from objects of  another type as data, is represented by afunctor between 
the corresponding categories. 

Doctrine 3. Any natural construction is represented by an adjoint 
functor. We mean "natural"  in the inuitive sense of  being "best  possible" 
with respect to some measure and in some context. 

We treat category theory as a "language of structure," where one may 
think of all aspects of a structure as "working together" in a coherent way. 
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Thus the natural semantics associated to the syntax of category theory 
seems to be similar to Bohm's philosophy of "wholeness" (Bohm, 1971). 
The other (meta-) physical aspects of category theory will be analyzed in 
the subsequent papers of the author. 

CONSTRUCTION 

Let X be a topological space, whose elements are the pure states of 
our system. The topology of  X should reflect the observable properties of 
the pure states. In our paper we assume that the space X is compact. It is 
rather a strong assumption. In some cases one can show that the solution 
manifolds of nonlinear wave equations form compact sets. In other cases 
we can make a suitable compactification of the set of pure states (Posiewnik, 
1982), adjoining in this way some states which one may call "unphysical" 
(Gunson, 1967). When we construct the set of states by means of so-called 
information systems we also obtain the subset of pure states as a compact 
one (Posiewnik, 1983). 

Definition (Mielnik, 1974). An observable is a continuous function 
f :  X ~ R 1, whose values f (x)  are interpretable as the statistical averages on 
various pure states 

The dynamical transformations (transmitters) of pure states will be repre- 
sented by continuous maps q~: X ~ X. Thus the mathematical structure of 
our sets of  states with dynamics corresponds to the structure of the category 
Comp, in which objects are compact sets and morphisms are continuous 
transformations of the sets. 

Now we would like to make the next heuristic step and to build up a 
mathematical structure by means of which one can represent the mixed 
states of  the system and the dynamical transformations of the states. Accord- 
ing to the Doctrine 3 the natural construction should be given by some 
adjoint functor. We have a very good candidate for our purpose in case 
when the set of pure states is a compact one. 

Definition. Let X be a compact space. 
A Radon measure on X is a regular Borel measure (Semadeni, 1971). 

~ t (X)  denotes the set of  Radon measures on X. ~ ( X )  is a Banach space 
with the norm defined by 

I'/x [' a--fsup{ f x  f(x) dtx ( x ) , f  is Borel measurable and [If,[ <-1 } 

Definition. A Choquet simplex is a compact convex set K being a base 
of a cone C such that C generates a lattice order in the space C - C. 
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It can be easily shown that the set 

5r = {IZ ~ J / ( X ) :  tz -> 0 and Iz(X) -- 1} 

is a Choquet simplex. 

Proposition (Semadeni, 1971). Let r X-~ Y be a morphism in Comp. 
I f / z  c ~ ( X )  and B is a Borel subset of  Y, define u(B)=tz(r 

Then u is a Radon measure on Y. Moreover the map q b : A / ( X ) ~ J / ( Y )  
defined as qb(iz) -- u for ~ in A/(X) is a nonnegative linear operator,  and 

II ll->l. 
We say that �9 is induced by ~ and denote it by J / (~ ) .  Let Ban1 be 

the category of Banach spaces and linear contractions. 
Then 

~ :  Comp-~ Ban1 

is a covariant functor called the Radon functor. 
Let 5r denote the restriction of A/(~): ~ ( X ) - ~  ~ ( Y )  to 5r It 

can be easily shown that 5~(~p): 5~(X)~ 5r is a continuous affine map 
and 5r Comp-~ Compconv (Compconv is the category of compact  convex 
sets and cont inuous affine maps) is a covariant functor. 

We may call it the simplex functor. 
Moreover 5r is a left-adjoint to the forgetful functor: V]: Compconv-~ 

Comp and the map 6: X-~5~(X) where 6(x),  x ~ X  is Dirac measure 
concentrated on the set {x}, determines the corresponding natural transfor- 
mation. 

Now we can in accord with the Doctrine 3 postulate that the construc- 
tion of the mathematical  structure of the set of  prescriptions for preparing 
the mixed states is provided by the simplex functor 5r The transmitters 
corresponding to the morphisms ~p: X ~  X are now given by continuous 
affine transformations 5Q(q) of  the set of  probability Radon measures on X. 

The other properties of  the construction resulting from the category 
theoretical qualities of  the functor 5 ~ will be investigated in the subsequent 
papers of  the author. For any observable f we can define the corresponding 
observable j~ on the set 5r by the formula 

= fxf(X) s (X) 

The integral is convergent for all continuous functions on X. The observables 
j7 form a set F. 

Let us denote by l(X) the space of all continuous functions on the set 
X and by l*(X) the space of linear continuous functionals on the space l(X). 

I f  X is compact  then the formula Jx g(x) dl.~(x) defines for any Radon 
measure/~ e rid(X) a linear functional on l(X), which we denote as 0(/~). 
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Then one can show (Semadeni, 1971) that 

o: ~e(x)  --, l*(X)  

is an affine isometrical bijection. 
In this way every observable f ~  F is an affine continuous function on 

the set 5e(X). 

SUMMARY 

The set of  prescriptions for preparing the mixed states of  our system 
is the set ~ ( X )  of probabili ty Radon measures on the (compact) set of  
pure states X. 

Observables are affine continuous functions on the set ~ ( X )  and 
dynamical transformations (transmitters) are given by continuous affine 
contractions ~ ( ~ ) :  ~ ( X ) - >  ~ ( X ) .  Now let us define, in the same way as 
in the Introduction, the equivalence relation R~ on the set ~ ( X ) .  

R~-equivalent  probabili ty measures represent physically indistinguish- 
able mixed states if the only way of"see ing"  them is by means of observables 
from the class /~. 

Using the recipe of  Mielnik we obtain the statistical figure S as a 
quotient set: b~(X)/R~. The set Ae(X) has an innate natural affine structure. 
Because all observables from the class F are affine, the structure is consistent 
with the relation R~ and we can transfer the structure to the quotient set 
S = ~(X) /R~.  The statistical figure S becomes in this way a convex set. 
Let q be the natural quotient map, q : ~ ( X ) - >  S = ~ ( X ) / R p ,  q(l~)=[/~], 
the R~-equivalence class of  the measure ~ ~ ~ ( X ) .  

We can define observables on the set S by means of  the prescription 

f [ /x ]  = f ( t t ) ,  f ~  F 

where /x is any element from the equivalence class [tt]. It is a standard 
result that the definition is consistent, i.e., value of the observable f does 
not depend on the choice of  an element/x  from the equivalence class [/x] 
and we can write f=]q - l .  

Also it is obvious that each observable f is an affine function on the 
set S. We equip the set S = 5~(X)/Rp with the quotient topology. The map 
q is continuous in the topology. Moreover, if we assume that the quotient 
topology is a Hausdorff one, then S is a compact  set as a continuous image 
of  the compact  set 5D(X). 

Observables f are continuous maps because they are bounded on S. 

Definition. Let A be a set and R an equivalence relation on A. A map 
T: A--~ A is said to be compatible with R iff aRa' implies TaRTa' for any 
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a, a ' c  A. Then  there exists a map 7~: A~ R ~ A~ R such that the d iagram 

is commutat ive .  

T 
A ) A  

A/R , A/R 

ay 
is defined as T([a]R) =[T(a) ]R.  We can ask whether  the t ransmit ters  

O~ are compat ib le  with the relat ion Rp. In  that  case we could define the 
dynamica l  t ransformat ions  rio(q) of the figure of states S. Let us re turn for 

a while to the space X of the pure states. Now Mielnik  (1974) says the 

following: 

Indeed having any measuring device destined to measure a certain statistical 
average f~  F, one can produce more observables by altering the measurement 
process. Instead of measuring straightforwardly the statistical average f on a 
given wave x e X one can let x undergo first a certain preliminary kineto- 
dynamical process [in our denotations] ~p and only afterwards measure f on the 
evolved wave x' = q~ (x), thus obtaining a new statistical quantity (fqO(x) = f(x') = 
f(r In this way the existence of "motions" prevents one from assuming too 
poor a class of observables: having any observable f e  F, one must also assume 
the existence in F of the infinity of other observables of the form fq~ generated 
by all possible evolution processes which the system might perform under the 
influence of various external forces. 

This suggests the admiss ion  in our  formal ism of the fol lowing 

assumpt ion :  

Assumption. The class F is invar iant  with respect to all dynamica l  

morphisms ~p: X - X. 
Now let /x e 5e(X). I f  v = 5r then  for every g in l(x) the fol lowing 

subst i tu t ion rule holds (Semadeni ,  1971): 

fx  g(x) dr(x) = fx  g(r dtx(x ) 

Let f ~  F be an observable and  q~: X ~ X a morph ism in Comp.  Then  from 
the Assumpt ion  it follows that f .  ~ is also an  observable.  

Observables f and tip generate observables )7 and  f ~ ;  respectively, on 

the set b~ 
From the subst i tu t ion rule it follows that 

( ~ ) ( ~ )  =)7(~e(~)~)  
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for e a c h / ,  ~ 5r In this way we see that the class F of observables on 
O~ is invariant with respect to all morphisms 5~ In that case one can 
easily show that each transmitter is compatible with the :relation R~ and 
thus it gives rise to an (affine) transmitter 5Q(~) on the statistical figure S. 
5P(~p) = qSe(~p)q -t. 

Remark. What happens when there is a transmitter 5P(~) which is not 
compatible with Rp (so our Assumption is not true)? Then in general we 
have splitting of the equivalence classes of  R~. Two states which were 
indistinguishable by observables from the class /~ after the evolution by 
means of 0~ become distinguishable. 

So we may say that the same initial states, under the same conditions, 
give rise to two distinct states. In this situation we are dealing with acausality, 
which we must interpret on stochastic grounds. When b~ is compatible 
with R~ but 5e(r -~ is not, then we deal with irreversibil i ty--because ow(~0) 
may map two or more distinct classes into a common R~ class. End of 
remark. 

Lemma (Engelking, 1975). A mapping T of the quotient space W / R  
into a topological space Z is continuous iff the composition Tq is continuous 
(q is the natural quotient map).  

From the Lemma we get that each transmitter 5~(q~) on S is continuous 
because 5e(~p)q = qSe(q~), but q and 5~(~p) are continuous. 

Now let us change the topological structure in the set S. The new 
topology will be the so-called or(S, F)  topology, a base for which there is 
a family of  sets of  the form 

~ f l , . . . , f , ; e l , . . . , e , ) : ( Y ' ) { s c S : [ . ~ ( s ) - - f ( S o ) [ < e i }  (1) 
i= l  

where So c S, e~ > 0, i = 1, 2 , . . . ,  n, and {fl ,  �9 �9  f ,}  is any finite subset of  F. 
The tr(S, F)  topology is a very natural one and is particularly appropri-  

ate for expressing the usual limitations of  any real experiment, o-(S, F)  
neighborhood (1) can be interpreted as consisting of  all states which cannot 
be distinguished from So when values of observables j~ are determined with 
errors ei. 

Because all f from P are affine and the class P distinguishes points 
of  S the or(S, F)  topology is locally convex and Hausdorff. 

We have the following: 

Proposition (Semadeni, 1971). Let (W, r) be a compact  space and let 
G be any subset of  l (W) separating W. Then r -- o-( W, G), i.e., the original 
topology of  W and the tr( W, G) topology are identical. From the Proposition 
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we get that  the  figure o f  states S is a compac t  convex set in loca l ly  convex  
Hausdor f f  t o p o l o g y  ~(S ,  F ) .  

S U M M A R Y  

The figure o f  states S o f  a phys ica l  sys tem with c ompa c t  m a n i f o l d  o f  
pu re  states is a compac t  convex set in loca l ly  convex H a u s d o r i f  topo logy .  

The class o f  observab les  consists  o f  con t inuous  affine funct ions  on  S. 
The d y n a m i c a l  t r ans fo rmat ions  are con t inuous  affine maps  o f  the set 

S into itself. 
I t  is a good  s tar t ing po in t  for  the app l i ca t ions  o f  the  Choque t  theory  

(Alfsen,  1971) which  we invest igate  in the  subsequen t  pape r s  (Pos iewnik  
and  Pykacz,  1983). 
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This work  was par t ly  s u p p o r t e d  by  the Pol ish Minis t ry  o f  H ighe r  
Educa t ion ,  Science and  Technology ,  p ro jec t  MRI.7 .  

R E F E R E N C E S  

Atfsen, E. M. (1971). Compact Convex Sets and Boundary Integrals, Ergwbnisse der math. 
BD.57 (Springer-Verlag, Berlin). 

Bohm, D (1971). Found. Phys., 1, 359. 
Engelking, R. (1975). Topologia og61na (PWN, Warsaw) (in Polish). 
Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. (1973). A junctiort between 

computer science and category theory: I, Part 1, IBM Research Report RC 4526. 
Gunson, J. (1967). Commun. Math. Phys. 6, 262. 
Haag, R., and Bannier, U (1978). Commun. Math. Phys., 60, 1. 
Herrlich, H., and Strecker, G. E. (1973). Category Theory (Allyn and Bacon, Boston). 
Mietuik, B. (t974). Commun. Math. Phys. 37, 221. 
Mielnik, B. (1980). J. Math. Phys. 21, 44. 
Posiewnik, A. (1982). On a compactification of the set of states of physical system (preprint). 
Posiewnik, A. (1983). Applications of information systems in convex approach to physical 

systems (preprint). 
Posiewnik, A., and Pykacz, J. (1983). Choquet properties of the sets of physical states (preprint). 
Semadeni, Z. (1971). Banach spaces of continuous functions (PWN, Warsaw). 


